Chemistry 330 - QUANTITATIVE ANALYSIS

<u>Course Description</u>: Chem 330 is a study of the common techniques and theory of gravimetric, volumetric, electrochemical, optical and chromatographic methods of analysis. Laboratory meets four and one-half hours per week. (Fall, Spring, Summer)

Course Information

Lecture:	M- F	9:00 am - 11:30 pm	Snell Hall 4115
Lab:	T,W,R	12:30 am – 5:00 pm	OCH 3009

Professor: Dr. Darwin Dahl Office: COOH 2111 Phone: 5074 Office hours: TBA

Textbook: Textbook: "Quantitative Chemical Analysis" by Daniel C. Harris 9th edition

Note: The eBook is free and linked through Blackboard. Purchase of a print copy is optional.

Student log in instructions: <u>https://community.macmillan.com/docs/DOC-6225-sapling-learning-student-single-sign-on</u>

Grading Policy:

Three hour exams will be given during the semester. A comprehensive final exam will be given and will consist of the ACS Standardized Exam. The following grading policy will be followed:

3 hour exams	40%
Homework (Sapling assignments)	10%
6 Laboratory experiments	35%
Final exam (comprehensive)	15%

Projected grading scale:

88 - 100	Α
77 - 87	В
65 - 76	С
52 - 64	D
- 51	F

The deadline for laboratory reports will be 1 week after completion of the experiment unless otherwise stated. A penalty of **5% per day** will result for reports turned in late. The procedure for submitting reports will be reviewed in class.

Absences

No make-up examinations or Labs will be scheduled.

Significant Dates:

June 4	Class begins
June 11	EXAM I
June 19	EXAM II
June 26	EXAM III
June 29	FINAL EXAM [9:00 am - 11:00] ACS EXAM

Tentative Lecture Schedule

<u>Exam I Material</u>

Chapter 1:Chemical Measurements -Chapter 6:Chemical Equilibrium-Chapter 8:Activity and the Systematic Treatment of Equilibrium	A review of solutions and their concentrations and stoichiometric calculations. Review of Titrations	
Chapter 6:	Chemical Equilibrium-	A review of chemical equilibrium
Chapter 8:		Activity and Activity coefficients in relations to solubilities and Systematic methods for solving multiple-equilibria
Chapter 27:	Gravimetric and Combustion Analysis	Treatment of Gravimetric procedures

<u>Exam II Material</u>

Chapter 4:	Statistics	Statistical treatment of errors
Chapter 9:	Monoprotic Acid/Base Equilibria	Strong acid/base and Weak acid/base equilibria
Chapter 10:	Polyprotic Acid-Base Equilibria	Equilibria involving polyprotic acid- base reactions, buffer solutions and alpha fractions
Chapter 11:	Acid-Base Titrations	Titrations and practical applications

<u>Exam III Material</u>

Chapter 12: EDTA Titrations		Complex-formation reactions, EDTA equilibria and applications					
Chapter 18:	Fundamentals of Spectrometry	Electromagnetic radiation, spectrum					
Chapter 19:	Applications of Spectrophotometry	Applications					
Chapter 20:	Spectrophotometers	Block diagrams of instrumentation					
<u>Exam IV Mat</u>	t <u>erial</u>						
Chapter 14:	Fundamentals of Electrochemistry	Redox, potentials and cells					
Chapter 15:	Electrodes and Potentiometry	Indicator and Reference electrodes					
Chapter 16:	Redox Titrations	Titration curves and applications					
Chapter 23:	An Introduction to Analytical Separations	Chromatography overview					
Chapter 24:	Gas Chromatography	Gas Chromatography overview					
Chapter 24:	HPLC	HPLC overview					

Students with disabilities who require accommodations (academic adjustments and/or auxiliary aids or services) for this course must contact the Office for Student Disability Services, Garrett 101. The OFSDS telephone number is (270)745-5004 V/TDD.

Student Learning Objectives:

Students will demonstrate proficiency using chemical knowledge and problem solving skills in the following topics: basic statistics, acid-base chemistry and equilibria, solubility, redox reactions, and separation techniques.

Laboratory Schedule

Text: Procedures in Quantitative Analysis, Dahl et al.

Laboratory Experiments will be located in Blackboard!

Note:	Prior to lecture on the day of your scheduled experiment, obtain the necessary standard or unknown and place in the oven to dry. Make sure and record the unknown # in your laboratory notebook! <i>You will need to provide your own safety glasses/goggles.</i> .							
Lab: TWR	12:30 - 5:00 pm OCH Room 3009							
Date:	TOPIC							
June 6	Check-in and Glassware Calibration							
June 7	Excel Spreadsheet Calculations and Graphing							
June 12, 13	Determination of Soda Ash using HCl							
June 14	* Potentiometric Analysis of a Phosphoric and Sulfuric Acid Mixture							
June 19,20	Complexometric Titration of MgO with EDTA							
June 21	* Ion-exchange lab "Self-developed" Formal Report.							
June 26	*Spectrophotometric Analysis of a Permanganate-Dichromate Mixture							
June 27	*Alcohol Determination by Gas Chromatography and Checkout.							

* denotes working with a partner!

Chem 330 Laboratory Excel Spreadsheet Exercise: Calculations/Graphing

The intent of these exercises is to familiarize yourself with the use of a spreadsheet and to be able to graph various types of data. The program we will use is excel.

A. <u>Prepare a plot of Density of water vs Temperature.</u>

Referring to the handout, reproduce the spreadsheet and corresponding graph as shown. Additionally, generate the best-fit equation for the data obtained. To obtain the equation use *a third-order polynomial* fit and selecting *4* significant digits.

B. <u>pH dependance on the solubility of HgS in water.</u>

Reproduce and complete the spreadsheet below and generate graphs as requested in Part B "Turn in;"

								<u>С.В.</u>				
Ksp=	<u>рН</u> 2	<u>[H+]</u>	<u>[OH-]</u>	<u>[Hg2+]</u>	<u>[\$2-]</u>	<u>[HS-]</u>	<u>[H2S]</u>	<u>Error</u>	<u>lg[Hg2+]</u>	<u>lg[S2-]</u>	<u>lg[HS-]</u>	<u>lg[H2S]</u>
5.00E-54	3											
Kb ₁ =	4											
0.9	5											
Kb ₂ =	6											
1.10E-07	7											
Kw=	8											
1.00E-14	9											
	10											
Formulas												
<u>Turn in:</u>												
		Part A:	-Spread	dsheet cal	lculation	1						
			-1	-Graph								
						ition and	l correlati	on coefficie	ent (r)			
		Part B:	-Spread	dsheet cal	lculation	1						
			•		(Fig 9-3							
				-Grapl	n Charg	e Balano	ce Error v	′s pH				
				- repor	t pH at 0) error; 1	Γhis is th	e solubilit	y!			

	Α	В	С		D		E		F	G		н	
1	Calculating Densit	y of H2O with Equat	ion 2-4	Г		8							1
2	(from the delightfu	l book by Dan Harris	;)	\Box									
3				\square	1.00100								
4	Constants:	Temp (C)	Density (g/mL)	\square	1.00000	-							
5	a0 =	5	0.99997	\square	0.99900		~				_		
6	0.99989	10	0.99970	\square	<u>0.99800</u>	_		X			_	-	
7	a1 =	15	0.99911	\square	0.99800 - 0.99700 - 0.99700 - 0.99600 - 0.99500 - 0.99500 - 0.99500 - 0.99500 - 0.99500 - 0.99400 - 0.99400 - 0.99400 - 0.99400 - 0.99400 - 0.99400 - 0.99400 - 0.99400 - 0.99400 - 0.99400 - 0.99400 - 0.99400 - 0.99400 - 0.99400 - 0.99400 - 0.99400 - 0.99500 - 0.99400 - 0.99500 - 0.99400 - 0.9950	_		7			-	Density	
8	5.3322E-05	20	0.99821	\square	0.99600	-					_		
9	a2 =	25	0.99705	\square	0.99500								
10	-7.5899E-06	30	0.99565		0.99400				*				
11	a3 =	35	0.99403		0.99300					1			
12	3.6719E-08	40	0.99223		0.99200		1	1	1	1			
13					0.99100		10	20	30	40	50		
14	Formula:						т	empera	ture (°C)				
15	C5 = \$A\$6+\$A\$8*	B5+\$A\$10*B5^2+\$A	\$12*B5^3										P
16													
17													20